Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Warming in high alpine regions is leading to an increase in glacier surface melt production, firn temperature, and firn liquid water content, altering regional hydrology and climate records contained in the ice. Here we use field observations and firn modeling to show that although the snowpack at Eclipse Icefield at 3000 m a.s.l. in the St. Elias Range, Yukon, Canada, remains largely dry, meltwater percolation is likely to increase with an increase in intense melt events associated with continued atmospheric warming. In particular, the development of year-round deep temperate firn at Eclipse Icefield is promoted by an increase in the number of individual melt events and in average melt event magnitude combined with warmer wintertime temperatures, rather than an earlier or prolonged melt season. Borehole temperatures indicate that from 2016 to 2023 there was a 1.67 °C warming of the firn at 14 m depth (to -3.37±0.01 °C in 2023). Results from the Community Firn Model show that warming of the firn below 10 m depth may continue over the next decade, with a 2 % chance of becoming temperate year-round at 15 m depth by 2033, even without continued atmospheric warming. Model results also show that the chance of Eclipse Icefield developing year-round temperate firn at 15 m depth by 2033 increases from 2 % with 0.1 °C atmospheric warming over the period 2023–2033 to 12 % with 0.2 °C warming, 51 % with 0.5 °C warming, and 98 % with 1 °C warming. As the majority of the St. Elias Range's glacierized terrain lies below Eclipse Icefield, the development of temperate firn at this elevation would likely indicate widespread meltwater percolation in this region and a wholesale change in its hydrological system, reducing its capacity to buffer runoff and severely limiting potential ice core sites. It is therefore urgent that a deep ice core be retrieved while the record is still intact.more » « less
-
Abstract Converting measurements of ice-sheet surface elevation change to mass change requires measurements of accumulation and knowledge of the evolution of the density profile in the firn. Most firn-densification models are tuned using measured depth–density profiles, a method which is based on an assumption that the density profile in the firn is invariant through time. Here we present continuous measurements of firn-compaction rates in 12 boreholes near the South Pole over a 2 year period. To our knowledge, these are the first continuous measurements of firn compaction on the Antarctic plateau. We use the data to derive a new firn-densification algorithm framed as a constitutive relationship. We also compare our measurements to compaction rates predicted by several existing firn-densification models. Results indicate that an activation energy of 60 kJ mol−1, a value within the range used by current models, best predicts the seasonal cycle in compaction rates on the Antarctic plateau. Our results suggest models can predict firn-compaction rates with at best 7% uncertainty and cumulative firn compaction on a 2 year timescale with at best 8% uncertainty.more » « less
-
The SUMup database is a compilation of surface mass balance (SMB), subsurface temperature and density measurements from the Greenland and Antarctic ice sheets. This 2023 release contains 4 490 442 data points: 1 778 540 SMB measurements, 2 706 413 density measurements and 5 489 subsurface temperature measurements. This is respectively 1 477 132, 420 825 and 4 715 additional observations of SMB, density and temperature compared to the 2022 release. This new release provides not only snow accumulation on ice sheets, like its predecessors, but all types of SMB measurements, including from ablation areas. On the other hand, snow depth on sea ice is discontinued, but can still be found in the previous releases. The data files are provided in both CSV and NetCDF format and contain, for each measurement, the following metadata: latitude, longitude, elevation, timestamp, method, reference of the data source and, when applicable, the name of the measurement group it belongs to (core name for SMB, profile name for density, station name for temperature). Data users are encouraged to cite all the original data sources that are being used. Issues about this release as well as suggestions of datasets to be added in next releases can be done on a dedicated user forum: https://github.com/SUMup-database/SUMup-data-suggestion/issues. Example scripts to use the SUMup 2023 files are made available on our script repository: https://github.com/SUMup-database/SUMup-example-scripts.more » « less
An official website of the United States government
